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CONTROL OF MOVABLE SOURCES IN DISTRIBUTED SYSTEMS ON
THE CLASSES OF IMPULSIVE, PIECEWISE CONSTANT, AND

HEAVISIDE FUNCTIONS

K.R. AIDA-ZADE1, Y.R. ASHRAFOVA1

Abstract. Problems of optimal control of movable lumped sources in distributed systems
when controls belong to the classes of impulsive, piecewise constant, and Heaviside functions
are considered in the paper. The optimal control problems are investigated for various cases,
according to the position of the sources. Necessary optimality conditions are obtained for
optimal control problems considered on all these classes. Constructive analytical formulas for
the gradient of a functional in the space of optimized parameters are derived. The results of
some numerical experiments are given.
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1. Introduction

The interest to problems of motions of the sources in one or another meaning, with various
physical natures has increased lately. For example, they arise when investigating movable sources
of a chemical agent’s concentration, underground waters’ mass (pressure), oil (generally, of
substance), impulse, tension, thermo tension, heat, voice, radiation, electromagnetic waves’
emission (generally, energy), information, etc. Similar problems also arise when solving some
inverse problems of mathematical physics.

Along with continuous displacements of a source, there may be instances when the source can
move from one position to another only unevenly, and an optimal movable control is only to be
found on the class of such step-wise displacements.

When controlling real-life objects, the optimization of control actions on the classes of con-
tinuous and piecewise continuous functions causes some technical difficulties. The solution to
optimal control problems on the classes of functions technically easily implemented is of impor-
tant value [1]-[8],[11]-[13]. Systems with control actions from the classes of impulsive, piecewise
constant, and, particularly, Heaviside functions can be related to such classes. In contrast to a
lot of other works [1], [3]-[5], [11], [13] here the control actions (factors) are not only the sources’
power, but also the positions and moments of their application.

Similar optimal control problems on the class of impulsive functions are considered in [1], [5],
[13] for ordinary differential equations. In [2], the problem of oil wells’ placement and of control
of oil output is considered.

In the mathematical models of a lot of controlled processes, Heaviside step functions are used
as control actions. It is clear that this is a particular case of a piecewise constant function, but
the control in the form of Heaviside functions is of interest from the practical point of view,
since in practice, a lot of controlled processes are such that every action takes on a value that is
constant in time and is switched on only once.
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The problems of optimal control of the sources’ motion and of their intensity (power) are
being investigated by a lot of authors on the class of piecewise continuous functions [3], [7]. The
statement of the problem of control of lumped sources for two dimensional cases is investigated
in the work [3]; in this case, the optimization consists in determining an optimal law of the
sources’ motion (trajectories), as well as their power.

The problems of optimal control of lumped sources in distributed systems when the controls
belong to the classes of impulsive, piecewise constant, and Heaviside functions are considered
in the paper. The optimal control problems are investigated for various cases, according to the
control of the sources’ position.

Analytical formulas for the gradient of a functional in the space of optimized parameters for
the optimal control problems on these classes are derived. These formulas allow one to use
the first order optimization methods [15] to find the numerical solution to the optimal control
problem. The results of numerical experiments are given.

2. Problem statement

Consider the following optimal control problem for systems with distributed parameters, which
consists in minimizing the functional

J(w) = α1

∫

Ω

[u(x, T ; w)− U(x)]2dx + α2

∥∥v(t)− v0(t)
∥∥2

L2
+ α3

∥∥s(t)− s0(t)
∥∥2

L2
. (1)

The state of the controlled object is described by the following n - dimensional boundary problem
of parabolic type:

ut(x, t) = div (σ(x)grad u(x, t)) +
L∑

i=1

vi(t)bi(x, t)δ(x− ξi(t)), x ∈ Ω ⊂ Rn, 0 < t ≤ T, (2)

u(x, 0) = ϕ(x), x ∈ Ω, (3)

u(x, t)|x∈Γ1 = µ1(x, t), σ(x)
∂u(x, t)

∂n
|x∈Γ2 = µ2(x, t), 0 < t ≤ T, (4)

Γ = Γ1
⋃

Γ2 = ∂Ω,Γ1
⋂

Γ2 = ∅.

Here ∂u(x,t)
∂n =

n∑
i=1

uxi cos(n ∧ ei); n is the unique internal normal to the part Γ2 of the domain

boundary; u = u(x, t) = u(x, t; w) the phase state of the object determined from the solution to
boundary problem (2)–(4) on the corresponding admissible value of the optimized control vector
w = (v(t), s(t)); Rn -n-dimensional Euclidian space; L-given number of control actions (sources);
b1(x, t), ..., bL(x, t), ϕ(x), µ1(x, t), µ2(x, t), σ(x), U(x), αi > 0, i = 1, 2, l > 0, T > 0, v0(t) =
(v0

1(t), ...., v
0
L(t)), s0(t) = (s0

1(t), ...., s
0
L(t)) are given continuous functions and values determining

the investigated process and the criterions of control on it; δ(x) =
∏n

i=1 δ(xi), δ(xi) generalized
Dirac function; v(t) = (v1(t), ...., vL(t)) the controls determining the sources’ power; ξi(t) ∈ Rn

the coordinates of i-th source’s placement at the point of time t, ξ(t) = (ξ1(t), ...., ξL(t)); ei-i-th
ort coordinate.

With respect to the sources’ placement ξi(t) = (ξi
1(t), ..., ξ

i
n(t)), i = 1, ..., L, we can consider

the following variants.
The sources are motionless:

ξi(t) = ξi = const, t ∈ [0, T ], ξi ∈ Rn, i = 1, ..., L,

or the sources are movable and their motion law is determined by a Cauchy problem with respect
to the following systems of differential equations
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ξ̇i(t) = f i(ξi, si(t), t), ξi(0) = ξi
0, t ∈ [0, T ], i = 1, ..., L, (5)

where ξi
0 ∈ Rn, i = 1, ..., L are given initial values of the sources’ placement; f i = f i(·, ·; ·),

i = 1, ..., L given n dimensional vector-functions; si(t), i = 1, ..., L mi-dimensional control actions
on the source’s motion. Thus the sources’ mechanical motions can be controlled processes as
well.

The problems of optimal control of the sources where the object (process) is controlled by
the sources’ intensity (power) and motion are investigated in the work. We also consider the
problems when the moments of the sources’ actions, as well as the coordinates ξi, i = 1, ..., L of
the motionless sources’ placement are optimized.

Optimal control problems (1)-(5) are considered for the following classes of control actions:
a) The sources’ controlled powers are from the class of impulsive functions

vi(t) =
mi∑

j=1

qijδ(t− θij),M =
L∑

i=1

mi, i = 1, .., L, (6)

and determined by finite-dimensional vector w = (q, θ) ∈ R2LM , where qij is the value of
the impulsive power of the i−th source at the points of time θij , j = 1, .., mi, i = 1, .., L; mi

given number of impulsive actions of the i−th source, i.e. functional (1) is determined by the
finite-dimensional vector:

w = (q11, q12, ..., q1m1 , ..., qLmL
, θ11, θ12, ..., θ1m1 , ..., θLmL

). (7)
Consider the following constraints on the control parameters:

qi ≤ qij ≤ qi, 0 ≤ ζ < θij − θi−1j ≤ η, θij ∈ [0, T ], j = 1, ...,mi, i = 1, ..., L, (8)

where qj , qj , ζ, η are given.
b) The sources’ controlled powers are from the class of piecewise constant functions

vi(t) = qij = const, t ∈ [θij−1, θij), θij−1 < θij , j = 1, ...mi, (9)

θi0 = 0, θim = T, M =
L∑

i=1

mi, i = 1, ..., L,

and determined by finite-dimensional vector w = (q, θ) ∈ R2LM , i.e. the values of controls
vi(t) are constant on semi-intervals [θij−1, θij) ⊂ [0, T ] and belong to some admissible set V ,
particularly, to parallelepiped (8), and θij , j = 1, ...,mi − 1, i = 1, ..., L are determined on the
intervals of constancy [θij−1, θij) of the value of the i -th source’s power, mi given number of
constancy intervals for the i−th source.

c) The sources’ controlled powers are from the class of Heaviside functions

vi(t) = vi(t; qi, θi) = qiχ(t− θi), i = 1, ..., L, (10)
and determined by finite-dimensional vector

w = (q, θ) = (q1, ..., qL, θ1, ..., θL) ∈ R2L, (11)
where the i−th component is the power of the i−th source beginning to influence at the point
of time wL+i = θi, i = 1, .., L; χ(t− θi) is Heaviside function.

Consider the following constraints on the control parameters:

qi ≤ qi ≤ qi, 0 ≤ θi ≤ T, i = 1, ..., L. (12)
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Here qi, qi, L are given. Each component of the control vector-function (control) v(t) is
piecewise constant function with only one change of value and is determined by the values θi

and qi, i.e. by the control’s action time and value.
d) The source’s motion, which is described by system of differential equations (5), is imple-

mented by a control from the class of impulsive functions

si(t) =
mi∑

j=1

sijδ(t− τij),M =
L∑

i=1

mi, i = 1, .., L, (13)

and determined by finite-dimensional vector w = (s, τ) ∈ R2LM , where sij is the value of the
impulsive power’s influence on the motion of the i−th source at the point τij , j = 1, ..,mi,
i = 1, .., L; mi given number of impulsive influences, i.e.

w = (s11, s12, ..., s1m1 , ..., sLmL
, τ11, τ12, ..., τ1m1 , ..., τLmL

). (14)

The constraints in form (8) can be imposed on the control parameters in the control problem.
e) The control actions s(t) on the sources’ motion, which is described by system of differential

equations (5), are piecewise constant functions, i.e.

si(t) = sij = const, t ∈ [τij−1, τij), τij−1 < τij , j = 1, ...mi , (15)

τi0 = 0 , τimL = T, M =
L∑

i=1

mi, i = 1, ..., L.

Thus the control is determined by the finite-dimensional vector w = (s, τ) ∈ R2LM , i.e. the
values of the control actions on the trajectory are constant on semi-intervals [τij−1, τij) ⊂ [0, T ]
and belong to some admissible set, for example, to (8).

f) The control actions on the sources’ motion are from the class of Heaviside functions

si(t) = siχ(t− τi), i = 1, ..., L,

i.e. determined by the finite-dimensional vector

w = (s, τ) = (s1, ..., sL, τ1, ..., τL) ∈ R2L. (16)

Here i−th component of vector (16) is the power of the i−th control action on the source’s
motion. We have the constraints on the control parameters in form (13).

Assume that the functions and parameters satisfy all the existence and uniqueness conditions
imposed on the solution to the boundary problem in all the optimal control problems mentioned
above.

The optimal control problems considered are equivalent to the problems of the optimization
of the functional J(w) in an admissible closed domain; thus the set of optimal solutions is
non-empty [11].

The following theorem holds true.

Theorem 2.1. If the functional J(w) is convex on the class of piecewise continuous control
functions, then it is also convex on the classes of impulsive, piecewise constant, and Heaviside
functions.

The controls may be discontinuous in the considered problems, so there isn’t any classical
solution to these problems.

We take the function u(x, t) = u(x, t; w) from the space L2(Ω× [0, T ]) under the generalized
solution to the boundary problem (2)-(4) with respect to the control w = (v(t), s(t)) from the
Hilbert space H = L2([0, T ]). This function satisfies the following equality
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∫

Ω

u(x, T )ψ(x, T )dx−
∫

Ω

ϕ(x)ψ(x, 0)dx−
T∫

0

∫

Ω

u(x, t)(ψt(x, t) + div(σ(x)gradψ(x, t)))dxdt−

−
L∑

i=1

T∫

0

∫

Ω

ψ(x, t)vi(t)bi(x, t)δ(x− ξi(t))dxdt = 0,

for every ψ = ψ(x, t) ∈ H2,1(Ω× [0, T ]) such that ∂ψ(x,t)
∂n |x∈Γ = 0 [11].

3. Numerical approach to the solution to the considered problems

Using the first order iteration optimization methods based on the application of analytical
formulas for the gradient of the target functional for numerical solution to the problem of
optimal control of the lumped sources’ power, placement, and motion in distributed systems.
For example, we suggest the use of the gradient projection methods

wk+1 = Pr
V

(wk − αkgradJ(wk)), k = 0, 1, ...

or interfaced gradient projection methods [14], [15]. Here w0 is some given initial value of the
control; gradJ(w) the gradient vector of the target functional on the optimized parameters;
αk the value of one-dimensional step along the direction of the anti-gradient of the functional;
PrV (·) the operator of projection on admissible set of controls V (this operator has a simple
form for positional constraints in form (15) [14]).

The formulas for the gradient of the functional obtained below can also be used to formulate
necessary optimality conditions (in the form of maximum principle in the variation form) for
the problems considered above. It is evident that the classes of control functions investigated
in this work are the special cases of general classes considered in other works [9]-[11], [14], [15],
where the formulas for the gradient of the functional are obtained in more general form. The
formulas for the gradient of the functional corresponding to the specified classes of functions are
obtained in this work by using the general approach for these classes of functions.

Taking into account that the control actions on the sources’ power and motion are mutually
independent in the problems considered, we can obtain formulas for the corresponding compo-
nents of the gradient independently (what is done below).

3.1. Formulas for the components of the gradient of the functional on the sources’
power and on points of time of their actions. Let us show that functional (1) in optimal
control problem (1)-(4) is differentiable in H. For this purpose, we take two arbitrary admissible
controls w = (v(t), s(t)) and w + ∆w = (v(t) + ∆v(t), s(t)). Let u(x, t; w), u(x, t;w + ∆w) be
the solutions to the boundary problem (2)-(4) corresponding to these controls. Introduce the
notation

∆u(x, t) = u(x, t; w + ∆w)− u(x, t; w).

From (2)-(4), it follows that ∆u(x, t) is a generalized solution to the following boundary
problem:

∆ut(x, t) = div (σ(x)grad∆u(x, t))+
L∑

i=1

∆vi(t)bi(x, t)δ(x−ξi(t)), x ∈ Ω ⊂ Rn, 0 < t ≤ T, (17)

∆u(x, 0) = 0, x ∈ Ω, (18)
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∆u(x, t)|x∈Γ1 = 0, σ(x)
∂∆u(x, t)

∂n
|x∈Γ2 = 0, 0 < t ≤ T. (19)

Then the increment of functional (1) can be written as follows

∆J(w) = J(w + ∆w)− J(w) = 2α1

∫

Ω

[u(x, T ; w)− U(x)]∆u(x, T )dx+

+α1

∫

Ω

|∆u(x, T )|2dx + α2(
∥∥v(t) + ∆v(t)− v0(t)

∥∥2 − ∥∥v(t)− v0(t)
∥∥2).

Let ψ(x, t) be the solution to the following conjugate problem ([11], [14]):

ψt(x, t) + div(σ(x)gradψ(x, t)) = 0, x ∈ Ω, 0 < t ≤ T, (20)

ψ(x, T ) = 2α1(u(x, T )− U(x)), x ∈ Ω, (21)

ψ(x, t) |x∈Γ1 = 0, σ(x)
∂ψ(x, t)

∂n
|x∈Γ2 = 0, 0 < t ≤ T. (22)

From (17)-(22), it follows that

2α1

∫

Ω

(u(x, T )− U(x))∆u(x, T )dx =
∫

Ω

ψ(x, T )∆u(x, T )dx =
∫

Ω

T∫

0

∂

∂t
(ψ(x, t)∆u(x, t))dt)dx =

=

T∫

0

∫

Ω

(ψt(x, t)∆u(x, t) + ψ(x, t)∆ut(x, t))dxdt =

=

T∫

0

∫

Ω

(−∆u(x, t)div(σ(x)gradψ(x, t)) + ψ(x, t)div(σ(x)grad∆u(x, t)))dxdt+

+
L∑

i=1

T∫

0

∫

Ω

ψ(x, t)bi(x, t)∆vi(t)δ(x− ξi(t))dxdt =

=

T∫

0

∫

Ω

σ(x)(ψ(x, t)div(∆u(x, t))−∆u(x, t)div(ψ(x, t)))dxdt+

+
L∑

i=1

T∫

0

∫

Ω

ψ(x, t)bi(x, t)∆vi(t)δ(x− ξi(t))dxdt =

=

T∫

0

∫

Γ

σ(x)(ψ(x, t)
∂∆u(x, t)

∂n
−∆u(x, t)

∂ψ(x, t)
∂n

)dsdt+

+
L∑

i=1

T∫

0

∫

Ω

ψ(x, t)bi(x, t)∆vi(t)δ(x− ξi(t))dxdt.

By using the estimation obtained in [10], [14] for the more general case, and taking controls
from the class of measurable functions
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∫

Ω

|∆u(x, T )|2dx ≤ C

T∫

0

|∆v(t)|2dt, (23)

where C > 0 is constant independent on the choice of ∆v, we have the following formula for the
increment of the functional (1)

∆J(w) =
L∑

i=1

T∫

0

∫

Ω

ψ(x, t)bi(x, t)∆vi(t)δ(x− ξi(t))dxdt+

+2α2

T∫

0

(vi(t)− v0
i (t))∆v(t)dt + o (‖∆v(t)‖) .

(24)

Next, we consider particular cases of (24) when obtaining formulas for the gradient of the
functional in the space of the optimized parameters for all the classes of functions mentioned
above.

3.1.1. Sources’ controlled powers are from the class of impulsive functions. Obtain formulas
for the gradient dJ(w)

dqij
, j = 1, ...,mi, i = 1, ..., L of the functional using (24). The increment

of the functional for the increment of the argument qijof the vector w from (6) by ∆qij , i.e.
∆w = (∆ijq, 0) ∈ R2LM , ∆ijq = (0, ...,∆qij , ..., 0) ∈ RML, can be written as follows:

∆qijJ(w) =

T∫

0

∫

Ω

ψ(x, t)bi(x, t)∆qijδ(t− θij)δ(x− ξi(t))dxdt+

+2α2

T∫

0

(vi(t)− v0
i (t))∆qijδ(t− θij)dt + o (‖∆v(t)‖) =

= ψ(ξi(θij), θij)bi(ξi(θij), θij)∆qij + 2α2(vi(θij)− v0
i (θij))∆qij + o(‖∆ijq‖).

Dividing both parts into ∆qij and proceeding to the limit as ∆qij → 0, we have:

dJ(w)
dqij

= ψ(ξi(θij), θij)bi(ξi(θij), θij) + 2α2(vi(θij)− v0
i (θij)), i = 1, ..., L. (25)

(25) is the formula for the components of the gradient of the functional on the impulsive power
in problem (1)–(8).

Now obtain the formulas for derivatives dJ(w)
dθij

, j = 1, ...,mi, i = 1, ..., L. For this purpose,
introduce the following function [8]

δε(t− τ) =
{

1
ε , t ∈ [τ − ε, τ ],
0, t /∈ [τ − ε, τ ], (26)

where ε > 0, τ are parameters; t the function’s argument. It is obvious that when ε tends to
zero the function δε(·) approaches the generalized Dirac function δ(·). Increment τ by ∆τ = ε.
Then δε obtains the following increment

∆τδε(t− τ) =





0, t /∈ [τ − ε, τ + ∆τ ],
−1/ε, t ∈ [τ − ε, τ + ∆τ − ε],
1/ε, t ∈ [τ + ∆τ − ε, τ + ∆τ ].

(27)

The increment of δε will have the following form when ∆τ < ε:
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∆τδε(t− τ) =





0, t /∈ [τ − ε, τ + ∆τ ], t ∈ [τ + ∆τ − ε, τ ],
−1/ε, t ∈ [τ − ε, τ + ∆τ − ε],
1/ε, t ∈ [τ, τ + ∆τ ].

(28)

We have then for ∆τ > ε

∆τδε(t− τ) =





0, t /∈ [τ − ε, τ + ∆τ ], t ∈ [τ, τ + ∆τ − ε],
−1/ε, t ∈ [τ − ε, τ ],
1/ε, t ∈ [τ + ∆τ − ε, τ + ∆τ ].

(29)

If we increment the argument θij of the vector w from (7) by ∆θij , i.e. ∆w = (0, ∆ijθ) ∈ R2LM ,
∆ijθ = (0, ..., ∆θij , ..., 0) ∈ RLM , then we have the increment of the functional in the following
form by using (24)

∆θijJ(w) =

T∫

0

∫

Ω

ψ(x, t)bi(x, t)qij∆θijδε(t− θij)δ(x− ξi(t))dxdt+

+2α2

T∫

0

(qijδ(t− θij)− q0
i δε(t− θ0

ij))qij∆θijδε(t− θij)dt + o(‖∆v(t)‖).
(30)

Taking (27) into account, from (30), we obtain the following formula for ∆θij = ε

∆θijJ(w) =
qij

ε

∫

Ω




θij+∆θij∫

θij+∆θij−ε

ψ(x, t)bi(x, t)dt−
θij+∆θij−ε∫

θij−ε

ψ(x, t)bi(x, t)dt


× ly

×δ(x− ξi(t))dx + +2α2qij

θij+∆θij∫

θij+∆θij−ε

(qijδ(t− θij)− q0
ijδε(t− θ0

ij))dt−

−
θij+∆θij−ε∫

θij−ε

(qijδ(t− θij)− q0
ijδε(t− θ0

ij))dt + o(‖∆v(t)‖) =

=
qij

ε

∫

Ω




θij∫

θij−ε

ψ(x, t + ∆θij)bi(x, t + ∆θij)− ψ(x, t)bi(x, t)dt


 δ(x− ξi(t))dx+

+o(‖∆v(t)‖).

(31)
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Taking into account (29), for the case ∆θij > ε, we have

∆θijJ(w) =
qij

ε

∫

Ω




θij+∆θij∫

θij+∆θij−ε

ψ(x, t)bi(x, t)dt−
θij∫

θij−ε

ψ(x, t)bi(x, t)dt


×

×δ(x− ξi(t))dx + 2α2qi

θij+∆θij∫

θij+∆θij−ε

(qijδ(t− θij)− q0
ijδε(t− θ0

ij))dt−

−
θij∫

θij−ε

(qijδ(t− θij)− q0
ijδε(t− θ0

ij))dt + o(‖∆v‖) =

=
qij

ε

∫

Ω




θij∫

θij−ε

ψ(x, t + ∆θij)bi(x, t + ∆θij)− ψ(x, t)bi(x, t)dt


×

×δ(x− ξi(t))dx + o(‖∆v‖).

(32)

Expanding the function ψ(x, t)bi(x, t) into Taylor series within the neighborhood of t, we have:

θij∫

θij−ε

[ψ(x, t + ∆θij)bi(x, t + ∆θij)− ψ(x, t)bi(x, t)]dt =

=

θij∫

θij−ε

(ψ(x, t)bi(x, t))′t∆θijdt + o(∆θij) = ∆θij(ψ(x, t)bi(x, t))|θij

θij−ε + o(∆θij).

(33)

Taking (33) into account in (31), (32), we get

∆θijJ(w) =
qij

ε

∫

Ω

(∆θij(ψ(x, t)bi(x, t)− ψ(x, t− ε)bi(x, t− ε))) |t=θijδ(x− ξi(t))dx + o(∆θij),

Dividing both parts of this equality into ∆θij and proceeding to the limit when ∆θij → 0, ε → 0,
we obtain

dJ(w)
dθij

= qij(ψ(ξi(t), t)bi(ξi(t), t))′t|t=θij
, j = 1, ..., mi, i = 1, ..., L. (34)

Taking into account (30), from (28), we have the following formula for ∆θij < ε

∆θijJ(w) =
qij

ε

∫

Ω




θij+∆θij∫

θij

ψ(x, t)bi(x, t)dt−
θij+∆θij−ε∫

θij−ε

ψ(x, t)bi(x, t)dt


×

×δ(x− ξi(t))dx + 2α2qij




θij+∆θij∫

θij

(qijδ(t− θij)− q0
i δε(t− θ0

ij))dt−

−
θij+∆θij−ε∫

θij−ε

(qijδ(t− θij)− q0
i δε(t− θ0

ij))dt + o(‖∆v(t)‖) =

=
qij

ε

∫

Ω




θij+∆θij∫

θij

(ψ(x, t)bi(x, t)− ψ(x, t− ε)bi(x, t− ε))dt


×

×δ(x− ξi(t))dx + o(‖∆v(t)‖).

(35)
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Expanding the function ψ(x, t)bi(x, t) into Taylor series within the neighborhood of t, and
dividing both sides of (35) into ∆θij , then proceeding to the limit when ∆θij → 0, ε → 0, we
have

dJ(w)
dθij

= qij

∫

Ω

lim
ε→0

lim
∆θij→0

ψ(x, t + ∆θij)bi(x, t + ∆θij)− ψ(x, t)bi(x, t)
∆θij

|t=θijδ(x− ξi(t))dx

Here we have a coincidence with formula (34), which determines the components of the gradient
of the functional with respect to the moments of impulsive influences in the problem (1)–(8).

3.1.2. Sources’ controlled powers are from the class of piecewise constant functions. Use formula
(24) for the functional’s increment, and choose the increment ∆w = ∆v(t) in the following form
to obtain the formulas for the components of the gradient of the functional: dJ(w)

dqij
, j = 1, ..., mi,

i = 1, ..., L in problem (1)-(4), (9),(10), when controlling piecewise constant functions

∆v(t) =
{

0 , 0 < t < θij−1, θij < t < T,
∆qij = const, θij−1 ≤ t < θij , j = 1, ..., mi, i = 1, ..., L.

(36)

If to take into account (36) in (24), then the formula for the functional’s increment will be as
follows

∆qijJ(w) =

T∫

0

∫

Ω

ψ(x, t)bi(x, t)∆qijδ(x− ξi(t))dxdt+

+2α2

θij∫

θij−1

(vi(t)− v0
i (t))∆qijdt + o(‖∆v(t)‖) =

θij∫

θij−1

ψ(ξi(t), t)bi(ξi(t), t)∆qijdt+

+2α2

θij∫

θij−1

(vi(t)− v0
i (t))∆qijdt + o(‖∆v(t)‖).

Dividing both sides of this expression into ∆qij , proceeding to the limit when ∆qij → 0, and
taking into account that o(||∆v(t)||)/∆qij → 0, ∆qij → 0, we have

dJ(w)
dqij

=

θij∫

θij−1

ψ(ξi(t), t)bi(ξi(t), t)dt + 2α2

θij∫

θij−1

(v(t)− v0(t))dt,

j = 1, ...,mi, i = 1, ..., L. (37)

Increment the argument θij of the vector w = (q, θ) by ∆θij to obtain the formulas for the
derivatives dJ(w)

dθij
, j = 1, ..., mi − 1, i = 1, ..., L, i.e.

∆w = (0, ∆θ) ∈ R2LM , ∆ijθ = (0, ...,∆θij , ..., 0) ∈ RL(M−L).

Assume that ∆θij > 0. Then it is evident that the control v(t) gets an increment ∆v(t) in
the following form

∆v(t) =
{

0 , 0 < t < θij , θij + ∆θij < t < T,
qij − qij+1, θij ≤ t < θij + ∆θij .

Then the functional gets an increment as
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∆θiJ(w) =

θij+∆θij∫

θij

(qij − qij+1)ψ(ξi(t), t)bi(ξi(t), t)dt+

+2α2

θij+∆θij∫

θij

(v(t)− v0(t))(qij − qij+1) + o(‖∆v(t)‖).

Using the average theorem, we have the formula

∆θijJ(w) = (qij − qij+1)ψ(ξi(t), t)bi(ξi(t), t)|t=θij |∆θij |+
+2α2(v(θij)− v0(θij))(qij − qij+1)|∆θij |+ o(‖∆v(t)‖).

Dividing both sides into ∆θij , and proceeding to the limit when ∆θij → 0, we get:

∂J(w)
∂θij

= (qij − qij+1)ψ(ξi(θij), θij)bi(ξi(θij), θij) + 2α2(v(θij)− v0(θij))(qij − qij+1),

j = 1, ..., mi − 1, i = 1, ..., L. (38)
Similarly it can be shown that the formula for the gradient of the functional with respect to

the parameter θij coincides with (38) in case ∆θij < 0.

3.1.3. Sources’ controlled powers are from the class of Heaviside functions. Use formula (24)
for the functional’s increment to obtain the formulas for the components of the gradient of the
functional dJ(w)

dqi
, i = 1, ..., L in problem (1)-(4), (11)-(13), when controls are from the class of

Heaviside functions. When we increment the argument qi of the vector w from (12) by ∆qi, i.e.

∆w = (∆iq, 0) ∈ R2L, ∆iq = (0, ...,∆qi, ..., 0) ∈ RL,

the functional’s increment is of the following form

∆qiJ(w) =

T∫

0

∫

Ω

ψ(x, t)bi(x, t)∆qiχ(t− θi)δ(x− ξi(t))dxdt+

+2α2

T∫

θi

(vi(t)− v0
i (t))∆qidt + o(‖∆v(t)‖) =

T∫

θi

ψ(ξi(t), t)bi(ξi(t), t)∆qidt+

+2α2

T∫

θi

(vi(t)− v0
i (t))∆qidt + o(‖∆v(t)‖).

Dividing both sides of the above expression into ∆qi, proceeding to the limit when ∆qi → 0,
and taking into account that o(||∆v(t)||)/∆qi → 0, we obtain

dJ(w)
dqi

=

T∫

θi

ψ(ξi(t), t)bi(ξi(t), t)dt + 2α2

T∫

θi

(vi(t)− v0
i (t))dt, i = 1, ..., L. (39)

To obtain formulas for the derivatives dJ(w)
dθi

, i = 1, ..., L, increment the argument θi of the
vector (12) by ∆θi, i.e.

∆w = (0,∆iθ) ∈ R2L, ∆iθ = (0, ..., ∆θi, ..., 0) ∈ RL.

First, assume that ∆θi > 0, and Heaviside function obtains an increment in the following
form
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∆χ(t− θi) = χ(t− (θi + ∆θi))− χ(t− θi) =
{

0, t /∈ [ θi, θi + ∆θi] ,
−1, t ∈ [ θi, θi + ∆θi],

Then the functional obtains the following increment

∆θiJ(w) =

T∫

0

∫

Ω

ψ(x, t)bi(x, t)qiδ(x− ξi(t))∆χ(t− θi)dxdt−

−2α2qi

θi+∆θi∫

θi

vi(t)− v0
i (t))dt + o(‖∆v(t)‖) = −qi

θi+∆θi∫

θi

ψ(ξi(t), t)bi(ξi(t), t)dxdt−

−2α2qi

θi+∆θi∫

θi

vi(t)− v0
i (t))dt + o(‖∆v(t)‖).

The increment ∆χ(t− θi) of Heaviside function obtains the following form for ∆θi < 0

∆χ(t− θi) =
{

0, t /∈ [ θi − |∆θi|, θi],
1, t ∈ [ θi − |∆θi|, θi].

Then we have the following formula for the functional’s increment:

∆θi
J(w) = qi

θi∫

θi−|∆θi|

ψ(ξi(t), t)bi(ξi(t), t)dxdt + 2α2qi

θi∫

θi−|∆θi|

(vi(t)− v0
i (t))dt + o(‖∆v(t)‖).

The functional’s increment will be of the following form, taking the average theorem into account
for both ∆θi > 0 and ∆θi < 0

∆θiJ(w) = ∓qiψ(ξi(θi), θi)bi(ξi(θi), θi) |∆θi| ∓ 2α2(vi(θi)− v0
i (θi))qi |∆θi|+ o(‖∆v(t)‖),

where the signs “+” and “–“ correspond to the cases ∆θi > 0 and ∆θi < 0, respectively. Dividing
both parts of the above expression into ∆θi, and proceeding to the limit when ∆θi → 0, regardless
of the sign of ∆θi, we obtain:

dJ(w)
dθi

= −qiψ(ξi(θi), θi)bi(ξi(θi), θi)− 2α2(vi(θi)− v0
i (θi))qi, i = 1, ..., L, (40)

Therefore the components of the gradient of the functional in problem (1)-(4), (11)-(13) are
determined by formulas (39), (40) in the space of the control parameters (q, θ) ∈ R2L.

3.2. The formulas for the components of the gradient of the functional with respect
to the sources’ placement. Here we obtain formulas for the gradient of the functional with
respect to the control actions on the trajectory of the source’s motion, which is determined by
system of differential equations (5).

We take any two admissible controls for this purpose: w = (v(t), s(t)) and w + ∆w =
(v(t), s(t) + ∆is(t)), ∆is(t) = (0, ..,∆si(t), .., 0).

Then the increment of the trajectory of the i−th source’s motion satisfy the following Cauchy
problem:

∆ξ̇i(t) = f i(ξi(t) + ∆ξi(t), si(t) + ∆si(t), t)− f i(ξi(t), si(t), t), t ∈ (0, T ],
∆ξi(0) = 0.

(41)

Let u(x, t;w), u(x, t;w +∆w) be the solutions to boundary problem (2)-(4) for these controls
and the corresponding trajectories of the sources’ motion. Introduce the notation
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∆u(x, t) = u(x, t; w + ∆w)− u(x, t; w).

From (2)-(5), it follows that ∆u(x, t) is a generalized solution to the boundary problem

∆ut(x, t) = div (σ(x)grad∆u(x, t)) +
L∑

i=1

vi(t)bi(x, t)∆ξi(t)δ(x− ξi(t)), (42)

x ∈ Ω ⊂ Rn, 0 < t ≤ T,

∆u(x, 0) = 0, x ∈ Ω, (43)

∆u(x, t)|x∈Γ1 = 0, σ(x)
∂∆u(x, t)

∂n
|x∈Γ2 = 0, 0 < t ≤ T. (44)

Then the increment of functional (1) can be written as

∆J(w) = J(w + ∆w)− J(w) = 2α1

∫

Ω

[u(x, T ; w)− U(x)]∆u(x, T )dx+

+α1

∫

Ω

|∆u(x, T )|2dx + α3(
∥∥s(t) + ∆s(t)− s0(t)

∥∥2 − ∥∥s(t)− s0(t)
∥∥2).

Let ψ(x, t) be a solution to conjugate problem (20)-(22). Carrying out similar computations in
case of the optimization of impulsive powers, we have the following formulas for the functional’s
increment

∆ξi(t)J(w) =

T∫

0

∫

Ω

ψ(x, t)bi(x, t)vi(t)∆ξi(t)δε(x− ξi(t))dxdt+

+2α3

T∫

0

(si(t)− s0
i (t))∆si(t)dt + o (‖∆s(t)‖) .

(45)

Carrying out similar computations in case of the optimization of the points of times of the
sources’ impulsive actions, from (45), we have

∆ξi(t)J(w) =

T∫

0

vi(t)(ψ(ξi(t), t)bi(ξi(t), t))′ξi(t)∆ξi(t)dt + o(
∥∥∆ξi(t)

∥∥)+

+2α3

T∫

0

(si(t)− s0
i (t))∆si(t)dt + o (‖∆s(t)‖) .

Introduce an analogue of Hamilton-Pontryagin’s function [9] in the following form

H(ξ(t), ω(t), s(t), t) =
L∑

i=1

ωi(t)f i(ξi(t), si(t), t) +
L∑

i=1

vi(t)ψ(ξi(t), t)bi(ξi(t), t).

where ωi(t) is the solution to the following conjugate problem

ω̇i(t) = −∂H(ξ(t), ω(t), s(t), t)
∂ξi(t)

, t ∈ (0, T ], ωi(T ) = 0. (46)

It is evident that
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ωi(T )∆ξi(T )− ωi(0)∆ξi(0) =

T∫

0

ω̇i(t)∆ξi(t)dt +

T∫

0

ωi(t)∆ξ̇i(t)dt. (47)

From (41), (46), (47), it follows that

T∫

0

ω̇i(t)∆ξi(t)dt = −
T∫

0

ωi(t)∆ξ̇i(t)dt,

i.e.

−
T∫

0

∂H(ξ(t), ω(t), s(t), t)
∂ξi(t)

∆ξi(t)dt = −
T∫

0

ωi(t)
∂f i(ξi(t), ωi(t), si(t), t)

∂ξi(t)
∆ξi(t)dt+

−
T∫

0

ωi(t)
∂f i(ξi(t), ωi(t), si(t) + ∆si(t), t)

∂ξi(t)
∆ξi(t)dt−

T∫

0

ωi(t)
∂f i(ξi(t), ωi(t), si(t), t)

∂si(t)
∆si(t)dt =

= −
T∫

0

ωi(t)
∂f i(ξi(t), ωi(t), si(t), t)

∂ξi(t)
∆ξi(t)dt−

T∫

0

ωi(t)
∂f i(ξi(t), ωi(t), si(t), t)

∂si(t)
∆si(t)dt + η,

where η = η1+η2+η3+η4, η1 = o(
∥∥∆ξi(t)

∥∥), η2 =

T∫

0

o1 (‖∆ξ(t)‖), η3 = −
T∫

0

∂∆sH(ξ(t), ω(t), s(t), t)
∂ξi(t)

∆ξi(t)dt, η4 = o (‖∆s(t)‖) ,
where ∆sH(ξ(t), ω(t), s(t), t) = H(ξ(t), ω(t), s(t) + ∆s(t), t)−H(ξ(t), ω(t), s(t), t).
Consequently,

T∫

0

vi(t)(ψ(ξi(t), t)bi(ξi(t), t))′ξi(t)∆ξi(t)dt =

T∫

0

ωi(t)
∂f i(ξi(t), ωi(t), si(t), t)

∂si(t)
∆si(t)dt + η.

Taking into account, that

∆si(t)J(w) = J(v, ξ(si(t) + ∆si(t)))− J(v, ξ(si(t)) = J(v, ξ(si(t)) + ∆ξ(si(t))−

−J(v, ξ(si(t))) =

T∫

0

∂H(ξ(t), ω(t), s(t), t)
∂si(t)

∆si(t)dt+

+2α3

T∫

0

(si(t)− s0
i (t))∆si(t)dt + η,

(48)

we have

gradsi(t)J(w) =
∂H(ξ(t), ω(t), s(t), t)

∂si(t)
+ 2α3(si(t)− s0

i (t)). (49)

Particularly, if the sources are motionless, but the coordinates of their placement are optimized,
then the formulas for the gradient of the functional

J(w) = α1

∫

Ω

[u(x, T ;w)− U(x)]2dx + α2

∥∥v(t)− v0(t)
∥∥2

L2
+ α3

L∑

i=1

∥∥ξi − ξi0
∥∥2

Rn
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with respect to the sources’ coordinates are obviously of the following form

dJ(w)
dξi

j

=

T∫

0

vi(t)(ψ(x, t)bi(x, t))′xj
|x=ξidt + 2α3(ξi

j − ξi0
j ), j = 1, ..., n, i = 1, ...L. (50)

3.2.1. Control actions on the sources’ motion are from the class of impulsive functions. Let
the sources’ motion, which is described by system of differential equations (5), be realized
by impulsive control. We increment the argument sij of the vector (14) by ∆sij , i.e. the
functional’s increment obtained at the expense of the increment ∆w = (∆ijs, 0) ∈ R2LM , ∆ijs =
(0, ...,∆sij , ..., 0) ∈ RML, can be written as follows

∆sijJ(w) =

T∫

0

∂H(ξ(t), ω(t), s(t), t)
∂si(t)

∆sijδ(t− τij)dt + 2α3

T∫

0

(si(t)− s0
i (t))×

×∆sijδ(t− τij)dt + η.

Dividing both sides of the above expression into ∆sij , and proceeding to the limit when
∆sij → 0, we have the required formulas for the components of the gradient of the functional

dJ(w)
dsij

=
∂H(ξ(τij), ω(τij), s(τij), τij)

∂si(τij)
sij + 2α3(si(τij)− s0

i (τij)), j = 1, ..., mi, i = 1, ..., L.

3.2.2. Control actions on the sources’ motion are from the class of piecewise constant functions.
Let the sources’ motion, which is described by system of differential equations (5), is realized by
controls from the class of piecewise constant functions. We choose the increment ∆si(t) in the
following form:

∆si(t) =
{

0 , 0 < t < τij−1, τij < t < T,
∆sij = const, τij−1 ≤ t < τij , j = 1, ..., mi, i = 1, ..., L.

Taking this increment into account in (48), we have the formulas for the components of the
gradient of the functional in the following form

dJ(w)
dsij

=

τij∫

τij−1

∂H(ξ(t), ω(t), s(t), t)
∂si(t)

dt + 2α3

τij∫

τi−1

(si(t)− s0
i (t))dt, j = 1, ...,mi, i = 1, ..., L.

3.2.3. Control actions on the sources’ motion are from the class of Heaviside functions.
Let the sources’ motion, which is described by system of differential equations (5), is realized

by relay controls from the class of Heaviside functions. The functional’s increment obtained
at the expense of the increment ∆w, ∆w = (∆is, 0) ∈ R2L, ∆is = (0, ...,∆si, ..., 0) ∈ RL

(increment of the argument si of vector (16)), can be written as follows

∆siJ(w) =

T∫

0

∂H(ξ(t), ω(t), s(t), t)
∂si(t)

∆siχ(t− τi)dt + 2α3

T∫

0

(si(t)− s0
i (t))×

×∆siχ(t− τi)dt + η.

Dividing both parts of the above expression into ∆si, and proceeding to the limit when
∆si → 0, we have the following formulas for the components of the gradient of the functional in
problem (1)-(7)
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dJ(w)
dsi

=

T∫

τi

∂H(ξ(t), ω(t), s(t), t)
∂si(t)

dt + 2α3

T∫

τi

(si(t)− s0
i (t))dt, i = 1, ..., L.

4. The results of numerical experiments

Problem 1. Consider a problem of the heating of a stick by lumped sources with impulsive
action, when L = 1, i.e. we can apply only one impulsive action on the process.

ut = uxx + (x + t)qδ(x− ξ)δ(t− θ), 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = ex, 0 ≤ x ≤ 1, u(0, t) = t + 1, u(1, t) = et+1, 0 < t ≤ 1,

0 ≤ ξ ≤ 1, 0 ≤ θ ≤ 1, 0 < q ≤ 10,

J(w) =

1∫

0

[u(x, 1)− 4]2dx + 0, 1(q − 3)2 + 0, 1(ξ − 0, 5)2 + 0, 1(θ − 0, 3)2 → min .

Thus the optimized parameters are the power, action time and the coordinate of the source’s
impulsive action w = (q, θ, ξ).

The exact value of the optimized vector is unknown. The problem is solved numerically by
using the formulas obtained above.

The results of the numerical experiments by using the interfaced gradient projection method
are given in table 1 with various initial values of the control parameters w0 =

(
q0, θ0, ξ0

)
, with

the precision of the optimization ε = 0, 001. Approximation of the boundary problem is made by
using the implicit scheme of grid method with error O(h2

x + ht) including boundary conditions,
where hx = 0, 01 and ht = 0, 01 are grid steps on the variables x and t, respectively.

Problem 2.

ut = uxx + (x2 + t2)
2∑

i=1

qiδ(x− ξi)δ(t− θi), 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = ex, 0 ≤ x ≤ 1,

u(0, t) = t + 1, u(1, t) = et+1, 0 < t ≤ 1,

0 ≤ ξi ≤ 1, 0 ≤ θi ≤ 1, 0 < qi ≤ 10, i = 1, 2,

J(v) =

1∫

0

[u(x, 1)− 4]2dx + 0, 1((q1 − 3)2 + (q2 − 4)2+

+0, 1((ξ1 − 0, 5)2 + (ξ2 − 0, 8)2) + 0, 1((θ1 − 0, 3)2 + (θ2 − 0, 5)2) → min .

L = 2 in this problem. The exact value of the optimized vector w = (q, ξ, θ), q, ξ, θ ∈ R2

is unknown. The problem is solved numerically by using the formulas obtained above. The
results of numerical experiments by using the interfaced gradient projection method are given
in table 2 with various initial values of the control vector w0 =

(
q0, θ0, ξ0

)
, with the precision of

the optimization ε = 0, 001. Approximation of the boundary problem is made similarly to the
previous problem.

Note that similar researches can be carried out in processes described by other types of partial
differential equations.
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Table 1. The numerical results of the problem 1.
(
q0, ξ0, θ0

)
(q∗, ξ∗, θ∗) J0 J∗ Number of iterations

1 (3;0,6;0,1) (2,995;0,479;0,219) 2,973 2,568 9
2 (6;0,2;0,2) (2,998;0,490;0,229) 3,477 2,568 4
3 (1;0,2;0,4) (3,00;0,494;0,219) 2,978 2,568 3

Table 2. The numerical results of the problem 2.
(
q0, ξ0, θ0

)
(q∗, ξ∗, θ∗) J0 J∗ Number of

iterations
1 (1;3;0,2; 0,2;0,4;0,3) (3,026; 4,008;0,491; 0,860;0,258;0,299) 3,1177 2,5735 11
2 (2;6;0,4;0.6;0,74;0,6) (3,00; 3,985;0,486; 0,888;0,260;0,369) 3,3466 2,5727 12
3 (2;4;0,3;0.5;0,2;0,3) (2,998; 3,99;0,488; 0,911;0,259;0,359) 2,68673 2,5729 36
4 (1;2;0.5;0.5;0,2;0,1) (2,998; 3,996;0,488; 0,910;0,259;0,367) 3,3933 2,5728 15
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